三维移动列车荷载案例

三维移动列车荷载案例

第1部分 1.1 学习目的

学习目的及概要

列车振动是周期加载现象,这是由于火车车轮间隔性地与铁轨发生震动。 振动周期与铁轨间距及列车速度有关。

列车振动受到各种因素的影响,如车辆、轨道、支撑结构、地面、地下结构等。这些因素是交互作用,激发和传播的,是比较复杂的振动现象。

▶列车移动荷载

通过本例题可以学习如下的主要功能及分析方法:

•从二维网格拓展生成三维网格

•特征值分析

•生成移动列车荷载

•分析结果——周围环境的振动效应和竖向地面沉降

•分析结果——建立随时间变化曲线

1.2 模型和分析总概述

本例题主要分析了列车移动荷载通过路堤时,振动荷载对周围结构和地表的影响。

首先建立由三个不同材料构成的地层以及由上面的上部路基、下部路 基、加固层生成路基,然后最终在最上层生成道床。

Chapter 10. 3D Moving Train Load Time History

跟随例题

三维移动列车荷载案例

第2部分

分析设置

[打开附件中的开始模型(10_train_start)]

* 野:分析>分析工况>设置

•设置模型类型、重力方向、初始参数及分析用的单位制。单位制可以在建模过程及 确认分析结果时修改,根据设置的单位制将自动换算参数。

•本例题是把 Z 轴作为三维模型的重力方向,单位制使用 SI 单位制(kN,m)。

▶分析设置

分析设置	×
项目名称	用户名
说明	
模型类型	重力方向
3D	© Y
2D	Z Z
◎ 轴对称	
○ 单位制	
kN v m	▼ Sec ▼
初始参数	
重力加速度(g)	9.80665 m/sec^2
水的容重	9.80665 kN/m^3
初始温度	0 [1]
平面应变厚度	1 m
	确定 取消

Chapter 10. 3D Moving Train Load Time History

[Unit : kN, m]

第3部分

定义材料及特性

3.1 定义岩土和结构材料

定义材料的本构模型时,岩土选择"莫尔-库伦"。路基不需要考虑非线 性,因此选择"弹性"。

岩土和结构材料定义如下

软岩

各向同性

莫尔-库

伦

1.2E+06

0.28

名称

材料

模型类型

一般

弹性模量(E)

泊松比(v)

▶表.岩土材料.

风化土	淤泥	底层路基	上层路基	加固路基	路面
各向同性	各向同性	各向同性	各向同性	各向同性	各向同性
莫尔-库 伦	莫尔-库 伦	莫尔-库 伦	莫尔-库 伦	莫尔-库 伦	弹性
2.0E+04	2.0E+04	1.0E+05	3.0E+04	1.3E+05	2.3E+07
0.28	0.35	0.30	0.35	0.25	0.18
20	18	20	19	19	25

容重(r)	22	20	18	20	19	19	25
Ко	0.5	0.5	0.5	0.5	0.5	0.5	0.5
渗透性							
容重(饱和)	22	20	18	20	19	19	25
初始孔隙比	0.5	0.5	0.5	0.5	0.5	0.5	0.5
排水参数	排水						
非线性							
粘聚力	100	20	10	0	15	0	-
摩擦角	37	30	28	40	31	35	-

材料

▶定义岩土材料

- 一般

▶▶定义岩土材料

- 渗透性

▶▶▶定义岩土材料

- 非线性

	1	名称	Soft rock	颜色		
续	쒼	莫尔-库伦	1	•	回结构	4
	渗透性	t 事线性	1			
单位	模里			1200000	kN/m*2	
Ψť	模量增	理		0	kN/m*3	
8.8	高度			0	m	
白松	批			0.28		
Ξ.	(Gamm	a)		22	kN/m*3	
口始	应力参	数				
0	24	的异性	Ha	1		
N7	参数					
AB	胀系数	t		1e-006	1/[T]	
泥	比动力	3)				
目尾	ułł			0.05		

建型类型	莫尔-库伦	2		•	[]] 结构
般渗透	性 事线性				
容重(饱和)			22	khUm*3
初始孔刚					
□ 非饱和	特性				
排水参数					
排水				•	
0 不	非水泊松比			0.5	
(i) Ski	empton's B	系數		1	
参流和团约 参透系数	古参数 t				
ko	c	ky	kz		
	1	1		1	m/sec
□ 依赖孝	透性的孔晓	(比(ck)			0
贮水率(Ss)		0 1/m		自动

确认 取消 适用

		SUILIOUX	颜色	
型类型	莫尔·摩伯	ê	•	回结构
般 渤	羞性 事线性	ī		
粘聚力(C)		100	kN/m*2
粘聚力力	日本		0	kN/m*3
参考高额	度粘聚力增量		0	m
摩擦角(FI)		37	[deg]
三世脉	角		37	[deg]
抗拉	强度		0	kNim*2

3.2 定义属性

属性体现网格的物理特性,在网格划分时将分配到网格组上。定义岩土 和结构属性时,首先定义要使用的材料。定义材料之后,确定结构类型和截面 形状(截面刚度)。

▶岩土属性表。

名称	软岩	风化土	淤泥	底 层 路 基	上 层 路 基	加 固 路 基	路面	仅显示
类型	3D	3D	3D	3D	3D	3D	3D	2D
材料	软岩	风化土	淤泥	底 层 路 基	上 层 路 基	加 固 路 基	路面	-

Тір

"仅显示 2D"是用来拓展岩土或路堤三维模型的二维网格,因此不需要截面或材料信息。

Chapter 10. 3D Moving Train Load Time History

Basic Tutorials

第4部分 建模

本教程的主要目的是学习从二维到三维的网格拓展,定义移动列车荷载,并 验证结果。可以通过打开开始文件,在此文件中基本材料和属性已经预定义 了。

4.1 几何建模

*^些:主菜单>导入>DXF2D(线框)...

导入 AutoCAD R13 版本的 DXF 文件。

• 打开 '10 train.dxf'。

*×:几何>顶点与曲线>交叉分割

交叉分割后可在线段交叉位置生成节点。

- 选择所有线,点击[确认]。
- 4.2 生成网格

∗≓:网格>>控制>>尺寸控制

通过尺寸控可以得到高质量且网格数量较少的网格划分结果。

- 参考下表,选择"边线 B1,B2,D1,D2,E1,E2,G1,G2,K1,K2,N1,N2 的路堤。
- 方法选择"分割数量"。输入"1"。
- 选择圆预览按钮检查生成的种子。单击[适用]。
- 请参考下表确定网格种子。

▶尺寸控制与分割数量 表	 边	方法	分割数量
	B1, B2, D1, D2, E1, E2, G1, G2, K1, K2, N1, N2	分割数量	1
	I1, I2, L1, L2	分割数量	3
	01, 02	分割数量	2
	A, C	分割数量	6
	F, H, J	分割数量	8
	М	分割数量	10
	Р	分割数量	12
	Q, R	分割数量	2

三维移动列车荷载案例

使用[相同播种线] 基于现有播种信息对其余部分定义网格尺寸。

∗₩:网格>>网格控制>>相同播种线

- 根据上图,目标对象"边 S"。
- 选择基准线"边 P,Q,R"。
- 选择匹配方法"投影"。
- 选择 预览按钮检查生成的种子,单击[适用]。
- 以同样的方式分配播种"T","U"。

使用[相同播种线]基于现有播种信息对其余部分定义网格尺寸。

使用映射网格生成二维网格。

*^墨:网格>>生成>>2D

Chapter 10. 3D Moving Train Load Time History

- 选择[映射-区域]表单。
- 选择"自动映射边界",选择如下图所示每个区域的四边。
- 尺寸输入"5",属性选择"8: 仅显示"。
- 网格组名称输入"路基(2D)"。
- · 点击[适用]。
- 以相同的方式,生成区域 B~I的二维网格。

沿Y方向将二维网格拓展生成三维网格。

将50米的总长度划分生成为20个网格单元。

- 选择[2D->3D]表单。
- · "选择过滤器"设置为"单元(T)"。选择"软岩(2D)"。

三维移动列车荷载案例

- 软岩的单元是拓展的模板,在下面的步骤中不会再用到了,点击"删除"选项来删除。
- 选择"y"作为延伸方向
- [延伸信息]设置为"均匀","偏移/次数"。
- 输入"2.5", "偏移/次数"为"20"。
- 属性指定"软岩"。
- 网格命名为"软岩"。单击[适用]。
- · 以相同的方式,生成三维网格"风化土"、"淤泥"、"底层路堤"、"上层路 堤"、"加固路基"、"路面"。

▶生成三维网格

Chapter 10. 3D Moving Train Load Time History

第5部分 <u>情形1</u>

特征值分析

特征值分析是用来分析结构本身的动力特性,也被称为"自由振动分 析"。特征值分析的第一和第二主振型的周期将用在时程分析中计算阻尼矩 阵。

5.1 设置边界条件

∗^尾:网格>>单元>>建立

- 在[其他]表单中,选择"地面弹簧"。
- 选择所有网格。
- 选择弹性边界,"地基反力系数"输入"1"。
- 点击"固定底部条件"选择,网格命名为"弹性边界"。
- · 单击[确定]。

Tip

进行特征值分析,将点的条件定义为弹性边界。根据铁路设计规范的地基反力系数计算弹簧 边界值。

垂直地面反应系数: $k_{\nu} = k_{\nu 0} \cdot (\frac{B_{\nu}}{30})^{-3/4}$ 水平地面反应系数: $k_{h} = k_{h0} \cdot (\frac{B_{h}}{30})^{-3/4}$ 在这里, $k_{\nu 0} = \frac{1}{30} \cdot \alpha \cdot E_{0} = k_{h0}, B_{\nu} = \sqrt{A_{\nu}}, B_{h} = \sqrt{A_{h}}$ Av 和 Ah 是垂直和水平方向的横截面。E0 地面弹性模量。 α 通常取于 1.0。 在 GTS NX,可以通过地面弹簧很容易地生成弹性边界。

5.2分析设置

∗≦:分析>分析工况>一般类型

- 分析名称为"特征值"。
- 求解类型选择"特征值"。
- 激活所有网格和边界条件。
- 单击[确定]。

5.3 运行分析

***:分析>分析>运行

运行分析

三维移动列车荷载案例

第6部分

分析结果

刀게汨木

(**特征值)** ▶结果分析表格

双击特征值分析结果表格,查看第一阶段和第二阶段的数值,他们的质量参与系数很高。

			В	EAL EIGENV	ALUES			
MODE		DADIANO	01/01/50	DEDIOD.	GENERALIZED	GENERALIZED	ORTHOGONALITY	ER
NUMBER	EIGENVALUE	RADIANS	CYCLES	PERIOD	MASS	STIFFNESS	LOSS	MEA
1	1.486319e+001	3.855281e+000	6.135871e-001	1.629760e+000	1.000000e+000	1.486319e+001	0.000000e+000	6.3866
2	1.961503e+001	4.428885e+000	7.048790e-001	1.418683e+000	1.000000e+000	1.961503e+001	0.000000e+000	5.5033
3	2.542789e+001	5.042607e+000	8.025559e-001	1.246019e+000	1.000000e+000	2.542789e+001	0.000000e+000	1.9580
4	4.704788e+001	6.859146e+000	1.091667e+000	9.160303e-001	1.000000e+000	4.704788e+001	0.000000e+000	2.6112
5	4.929095e+001	7.020752e+000	1.117387e+000	8.949451e-001	1.000000e+000	4.929095e+001	0.000000e+000	5.0734
6	6.349148e+001	7.968154e+000	1.268171e+000	7.885372e-001	1.000000e+000	6.349148e+001	0.000000e+000	2.1057
7	6.669329e+001	8.166596e+000	1.299754e+000	7.693764e-001	1.000000e+000	6.669329e+001	0.000000e+000	1.5079
8	6.899587e+001	8.306375e+000	1.322001e+000	7.564291e-001	1.000000e+000	6.899587e+001	0.000000e+000	3.4056
9	7.109971e+001	8.432064e+000	1.342005e+000	7.451537e-001	1.000000e+000	7.109971e+001	0.000000e+000	2.4435
10	7.603368e+001	8.719729e+000	1.387788e+000	7.205712e-001	1.000000e+000	7.603368e+001	0.000000e+000	3.1646
			МОГ	DAL EFFECT	VE MASS			
MODE NUMBER	T1	T2	тз	R1	R2	R3		
1	0.000000e+000	1.051802e+008	0.000000e+000	1.420140e+010	0.000000e+000	0.000000e+000		
2	1.263321e+008	0.000000e+000	0.000000e+000	0.000000e+000	1.063867e+010	0.000000e+000		
3	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000	7.965364e+010		
4	0.000000e+000	2.379728e+007	0.000000e+000	3.749985e+009	0.000000e+000	0.000000e+000		
5	0.000000e+000	0.000000e+000	7.387765e+007	0.000000e+000	0.000000e+000	0.000000e+000		
6	0.000000e+000	6.560521e+005	0.000000e+000	1.049821e+010	0.000000e+000	0.000000e+000		
7	2.069277e+006	0.000000e+000	0.000000e+000	0.000000e+000	2.074238e+010	0.000000e+000		
8	0.000000e+000	0.000000e+000	0.000000e+000	1.557506e-010	4.605718e-011	5.828123e+009		
9	0.000000e+000	0.000000e+000	1.047309e+007	1.065030e-012	0.000000e+000	0.000000e+000		
10	2.650355e+005	2.045152e-012	0.000000e+000	2.245241e-008	1.838852e+009	0.000000e+000		
TOTAL	1.286664e+008	1.296335e+008	8.435075e+007	2.844960e+010	3.321990e+010	8.548176e+010		
TOTAL IN MODEL	2.137232e+008	2.137232e+008	2.137232e+008	6.050075e+010	1.204230e+011	1.494188e+011		
			PERCENTA	GE MODAL E	FFECTIVE M	ASS		
MODE NUMBER	T1	T2	тз	R1	R2	R3		
1	0.00%	49.21%	0.00%	23.47%	0.00%	0.00%		
2	59.11%	0.00%	0.00%	0.00%	8.83%	0.00%		
3	0.00%	0.00%	0.00%	0.00%	0.00%	53.31%		
4	0.00%	11.13%	0.00%	6.20%	0.00%	0.00%		
5	0.00%	0.00%	34.57%	0.00%	0.00%	0.00%		
6	0.00%	0.31%	0.00%	17.35%	0.00%	0.00%		
7	0.97%	0.00%	0.00%	0.00%	17.22%	0.00%		
8	0.00%	0.00%	0.00%	0.00%	0.00%	3.90%		
9	0.00%	0.00%	4.90%	0.00%	0.00%	0.00%		
10	0.12%	0.00%	0.00%	0.00%	1.53%	0.00%		
								4

第5部分

分析设置

(时程分析)

Chapter 10. 3D Moving Train Load Time History

<u>情形 2</u> 51 设置荷载条件(列车移动

5.1 设置荷载条件(列车移动荷载)

打开"10_train_model.gts"文件,它是未指定边界条件的三维网格模型。在这个文件中设置边界条件和荷载条件,进行列车移动荷载时程分析。

在静力分析中,对包含岩土等无限远材料的模型需要保证边界与主要区域足够远。但在动力分析中波会发生反射,如果边界设置与静力分析一样,很可能发生错误。为了避免出错,我们用近似方法,比如人工边界,传递边界或超有限元,无限元和边界元等。本例题中采用 Lysmer 和 Wass 提出的"粘性边界"。

*招:荷载>>列车动力荷载表

对模型施加列车动力荷载条件。建议考虑使用实际的时间-力函数值,本例题中采用移动的列车动力荷载模拟 KTX20 列车 (300 km/h = 83.33 m/s)。

移动的列车动力荷载模型假定移动列车在短时间内经过模型的每个节点时,冲 击荷载施加到节点上,并且将这种冲击荷载理想化为三角形。

- 选择列车荷载施加的节点(即车轮通过点)。
- 根据火车的方向选择开始和结束的节点。
- · 列车类型设置为"KTX,20节车",输入速度 83.33 米/秒。
- 选择-Z方向。
- 动力荷载命名为"列车动力荷载"。
- 考虑到列车的车轮左右两边都有,对另一个目标对象生成动力荷载函数。
- 点击"显示图形",查看各个点的动力荷载函数。

▶列车动力荷载表格

▶▶ 列车动力荷载函数

▶定义列车动力荷载

5.2 设置边界条件

∗☑:网格>>单元>>建立

- 在[其他]表单选择"地面弹簧"。
- 选择所有网格。
- 点击"阻尼常数/面积"。
- 勾选"固定底部条件",网格命名为"粘性边界"。
- · 单击[确认]。

_____Тір

在定义粘性边界时,根据岩土材料输入 x,y,z 方向阻尼值并计算。阻尼值计算公式如下所示。

オ P 波,

$$C_p = \rho \cdot A \cdot \sqrt{\frac{W+2G}{\rho}} = W \cdot A \cdot \sqrt{\frac{W+2G}{W} \cdot 9.81} = c_p \cdot A$$

对 S 波,
 $C_s = \rho \cdot A \cdot \sqrt{\frac{G}{\rho}} = W \cdot A \cdot \sqrt{\frac{G}{W} \cdot 9.81}} = c_s \cdot A$
在这里, $G = \frac{E}{2(1+\nu)}, \lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}$, E:弹性模量、v:泊松比、A:面积。
在 GTS NX 中,可以通过"地面弹簧"很容易生成粘性边界。

5.3分析设置

∗^墜:分析>分析工况>一般类型

- 命名"列车动力荷载"。
- 求解类型选择"线性时程(直接积分法)"。
- 点击[定义时间步骤],在里面输入分析时间。
- 输入名字。[持续时间]输入"3"和[时间增量] 输入"0.03"。
- 在[分析控制]中,定义阻尼。

Chapter 10. 3D Moving Train Load Time History

- · 选择"使用振型阻尼计算",将[5-1.特征值分析]的结果输入到模式1和模式2中。
- 输入"0.05"。
- 单击[确认]并关闭分析控制窗口。
- 将所有的网格、边界条件、荷载拖到激活组。
- 单击[确认]。

名称		时间			添加 插入	· 阻尼 ● 直接输入法	@ 质單和刚度因子法	
持续时间	持续时间		3 sec			质里和刚度系数		-
时间增量		0.03 se		修改		阻尼类型	☑质望因子	☑ 刚度阻尼
中间值输出((时间间隔N)	1	1	i i	删除	◎ 直接指定	0	0
		5				 使用振型阻尼计算 	0.246806868	0.009333209
号 名称	尔 才	持续时间	时间增量	中ì	间值输出	杀颈计具	模式 1	模式 2
1 时间	3 3		0.03	1		◎ 频率[Hz]	0	0
						⑧ 周期 (秒)	1.62976	0.9160303
						阻尼比	0.05	0.05
						■ 考虑材料阻尼	显示指统	自材料系数

5.4 执行分析

**:分析>>分析>>运行

执行分析。

分析过程中可以实时查看计算过程。在[信息输出窗口]可以查看结果是否收敛、警告和 报错等信息。

在分析开始前模型将自动保存。模型相关信息将以*.OUT 文件形式保存在模型所在位置文件夹。

分析时输出结果可以在分析>分析工况>添加>输出控制中设置。如果勾选二进制/文本 设置输出选项的情况下,分析后节点及单元结果将一起输出到*.OUT 文件上。

▶定义时间步骤

▶▶输入模型阻尼

三维移动列车荷载案例

跟随例题

第6部分

分析后,可以在结果目录树中查看变形、应力等结果。在本例题中,主要查 看如下结果:

结果分析

- 特定时间的位移/加速度
- 时程分析的应力
- 6.1 特定时间的位移/加速度
 - 位移>总平移(V)。
 - 滚动屏幕下面的动态条查看各阶段分析结果。

6.2 时程分析的应力

在结果目录树中 Solid Stresses 查看土体的应力。S-XX、S-YY、S-ZZ 代表各个方向的应力, S-PRINCIPAL A(V)代表着最大主应力, S-PRICIPAL C(V)代表着最小主应力。

 工作目录树>结果>列车动力荷载>线性时程(直接积分法) > ABSOLUTE Max>Solid Stresses>S-PRINCIPAL A(V),S-PRINCIPAL C(V)。查看整个 过程的最大、最小主应力。

▶最大主应力▶最小主应力

- ▶T=0.03sec时的位移 ▶▶T=0.45sec时的位移
- ▶▶▶T=0.09sec时的位移